

Proposal for the 2011 AHS Request for a Multi-mission Rotorcraft: GT VADR (Variable Diameter Tilt Rotor)

GeorgiaInstitute of **Tech**nology

Multi-Mission Rotorcraft Design

PRIMARY CONSIDERATIONS
Airspeed range target 192 – 230 kts
Hover Power required for 6k95
Operation radius of 250 nm
4000 lb payload

SECONDARY CONSIDERATIONS

- ICAO Level 4 noise
- Reconfigurable cabin
- IR suppression considered
 Non-recurring/operational hourly cost
- Op availability for 3 missions/week

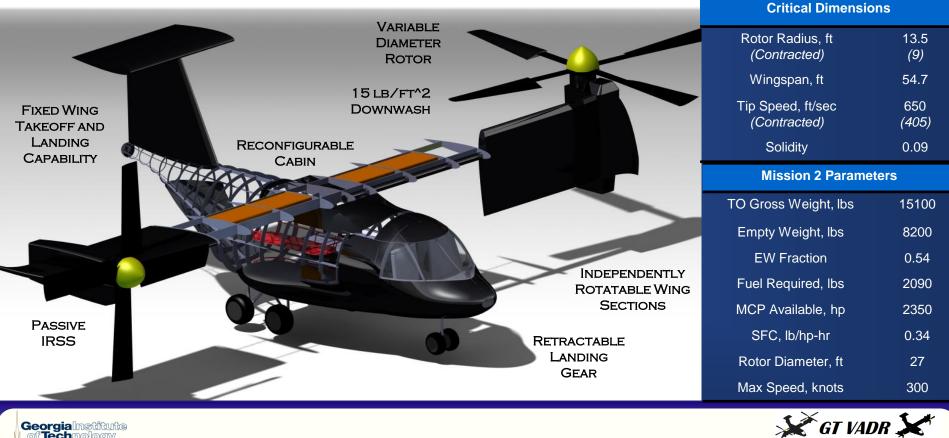
http://vtol.org/awards/sdcomp.html

Georgia Institute

CAPITALIZE ON TILT ROTOR BENEFITS

- Low risk 300 knot dash speeds
- Better Lift/Drag ratios over helicopters
 - High Best range and loiter speed
 - Cruise altitudes 20k ft+, self deploy

FOCUS ON ISSUES W TRADE STUDIES


- High downwash for unimproved fields
 High weight fractions
- Poor autorotation/emergency landing
- Vertical download weight penalties
 Poor yaw rates in hover

BALANCE TECH INSERTION/RISK

SENSITIVITY TO "GUARANTEED" GROWTH AND VARIATION

GT VADR

VADR Design Features

3

Georgia Institute of Technology

Requirements Summary

Focused preliminary design to satisfy all AHS specified requirements

Identified and incorporated implicit AHS design requirements

Incorporated basic civil tilt rotor requirements using the BA609 certification as a guide

Incorporated some expected military requirements; loosely coupled to new JMR program

Integrated requirement analysis into real time desigr environment

an	Requirement	Туре	Status	Comments
gn ed	Mission 1 - Search and Rescue	AHS		Incorporated into Design
a	Mission 2 – Insertion	AHS		Incorporated into Design
	Mission 3 - Resupply	AHS		Incorporated into Design
	Velocity - 192 - 270 kts	AHS		300 kts at 6k95
ed	4000 lb Payload	AHS		4000 lb payload design point
	250 nautical mile radius	AHS		Incorporated into Design
	4 crew	AHS		Incorporated into Design
	6 passengers	AHS		Incorporated into Design
ilt	Reconfigurable cabin	AHS		Incorporated into Design
he	ICAO Level 4 Noise	AHS		WOPWOP Analysis
ide	6k95 HOGE	AHS		Blade Element Performance Analysis
	CT7-8A Rubber Engine	AHS		2300 HP per engine (optimized design)
ted	Vertical Download	Other		15 lb/ft^2 design point
ely	Takeoff/Landing Performance	FAR		Fixed Wing Performance, Part 25, OEI
am	Structures	FAR		Developed V/N diagrams for all config
	Single Engine Operations	FAR		OEI (One Engine Inop) Analysis
	IFR Considerations	FAR		45 min reserve added
ign	Transition	FAR		Transition does not reduce altitude
9.1	Weight	Other		15100 Mission 2 (20k adequate, 15k desired)
	Cost Considered	Other		\$17 Mil per a/c, \$1667/hr (Bell cost model)

VADR Performance with Wing/Nacelle Scheduling

Configuration	Airspeed	Preliminary Power Required and Available	6k95+ Hover C
W/N Up	0 - 15 kts		300 kt+ Maxim
W Trans/N Up	15 - 30 kts	4500 Power Available	(95% Propeller
W Fwd/N Up	30 - 120 kts	4000	for "Golden Ho
W Fwd/N Fwd	120 kts	3500	180 kt Best Ra
Rotor Contract	150 kts +	Helicopter Mode Power Reg	for reduced mis
		GU 2500 2000 1500 1500 1000 500 1000 500 1000	125 kt Loiter Sp 200 kt+ (estima mode forward a recommended transition limit a Substantial Por for Transitions 295 kts at 20,0 for robust miss

Capability

num Airspeed er Efficiency) our" in 45 min

ange Speed ission times

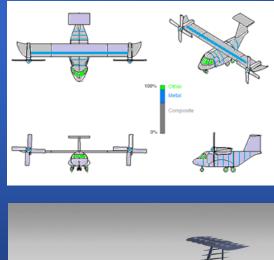
Speed

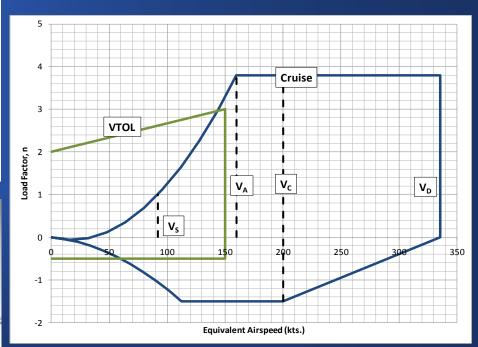
nated) helo l airspeed, d upper at 150 kts

ower Margins

000 ft allowing sion planning

Georgialnstitute of Technology


Maneuver Envelopes and Structural Details


Uses mixed metal and composite structural layout to balance manufacturability, reparability and cost

Initial operational envelope consistent with power requirements

V-N diagrams developed using BA-609 certification guide for helo and fixed wing mode to include gust rejection

Integrated structural layout into CATIA model for design decisions

Initial Operational Envelope for Helo/Fixed Wing Mode

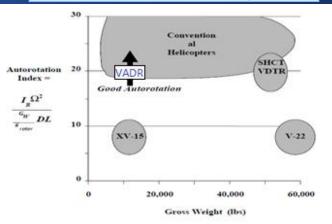
Multi-Mission Performance

Search and Rescue	Mission 1		Insertion	Mission 2		Resupply	Mission 3
TOGW (lbs)	12399		TOGW (lbs)	15101		TOGW (lbs)	14956
Mission Time (hr)	3.5		Mission Time (hr)	3.25		Mission Time (hr)	3.55
EW Fraction	0.61		EW Fraction	0.54	-	EW Fraction	0.55
Fuel Required	3034		Fuel Required	2085		Fuel Required	2956
MCP Available (hp)	1946		MCP Available (hp)	2346		MCP Available (hp)	2325
SFC (lb/hp-hr)	0.34		SFC (lb/hp-hr)	0.34		SFC (lb/hp-hr)	0.34
Rotor Dia. (ft)	26.6		Rotor Dia. (ft)	26.6		Rotor Dia. (ft)	26.6
Retracted (60%, ft)	16	MEDEVAC Cabin Configuration	Retracted (60%, ft)	16	- 11 -	Retracted (60%, ft)	16
Max Speed (kts)	300	MEDE W/O Cabin Coningulation	Max Speed (kts)	300		Max Speed (kts)	300
D C A Search	and Resc	G H H Uue Functional Profile	с Р А In	D sertion/Re	E I H G esupply Fund	J ctional Profile	K L M

Fixed Wing Versatility and Emergency Handling

VADR brings unique fixed wing capability over all flight segments.Fixed Wing takeoff and landing performance calculated to allow for operation at the majority of improved runways.

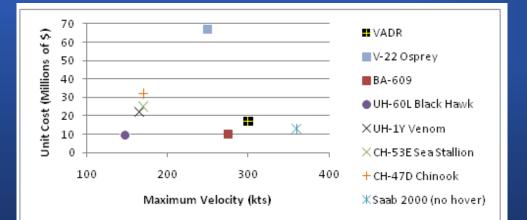
Engine out cases analyzed according to FAR Part 25.


Ferry analysis for self-deployment mission, assuming 4000 lb ferry fuel.

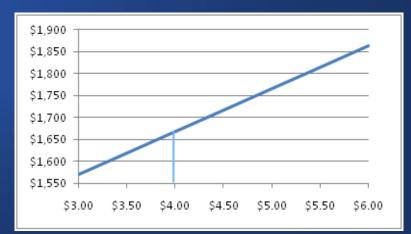
Fixed wing configuration allows for improved glide over rotorcraft.

VADR blade system weight increases Autorotation Index for improved rotorcraft configuration emergency handling over current tilt rotors.

Segment	Result	
Fixed Wing TO Distance (ft)	2,600	
Fixed Wing Landing Distance (ft)	2,800	
Fixed Wing OEI TO Distance (ft)	4,200	
Ferry Range (nm)	5,200	
Autorotation Index	20	



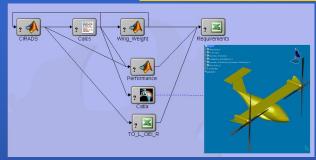
"Advancing Tiltrotor State-of-the-Art with Variable Diameter Rotors" AHS Forum 48. Evan A. Fradenburgh, David G. Matuska,. 1992.



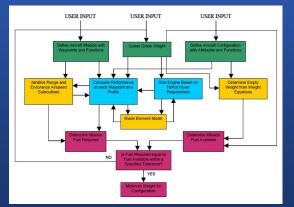
Procurement and Operational Cost

- Estimation by Bell Helicopters PC based Cost Model
- Cost model allows for increases considering technology factor:
 - VDTR TRL 5, cost estimate +20% to rotor system
 - Active Aileron TRL 2, cost estimate +15% for flight controls
 - Variable Wing Section TRL 5, cost estimate +8% for wing

Total Development Costs	\$522.8 Mil	
Cost per A/C (First 100 units)	\$18 Mil	
Cost per A/C (After 100 units)	\$17 Mil	
Total Operating and Support Cost	\$1667/hr	



O&S Sensitivity to Fuel Cost (\$/gal)



Georgia Institute of Technology

Model Center Design Environment

Model Center Environment

CIRADS Flow Diagram

Model Center environment allows for multiple analysis tools with consistent design parameters, inputs and outputs.

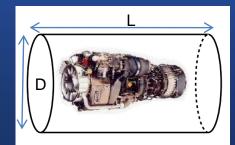
Tools in iterative design loop:

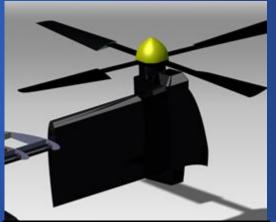
- CIRADS Momentum based Georgia Tech design code
- Performance Analysis MATLAB code for power available and required
- Fixed Wing Performance MATLAB code for fixed wing takeoff/landing/OEI
- CATIA Physical modeling including weight and center of gravity calc
- Structural Wing Analysis MATLAB code originally from sizing program for JVX
- Requirements Analysis EXCEL requirements tracking and design decisions
- Blade Element Hover MATLAB code to verify 6k95 and support VDTR design
- Engine Sizing MATLAB code supporting rubberized CT7 engine model

Tools feeding design (normally due to long tool analysis times):

- MBDyn Dynamics modeling tool for blade design
- Star-CCM+ Computational fluid dynamics code
- FLIGHTLAB S&C design tool, flight control system modeling and HQ analysis
- WOPWOP Aircraft noise analysis tool

Conducted Design of Experiments for overall optimization




Engine and Transmission Sizing

- Required CT7-8A "Rubber" Engine
- Engine performance and sizing MATLAB code developed from AHS 2007 RFP
- Basic model in CATIA created
- Data used in FLIGHTLAB
- Basic Engine Sizing

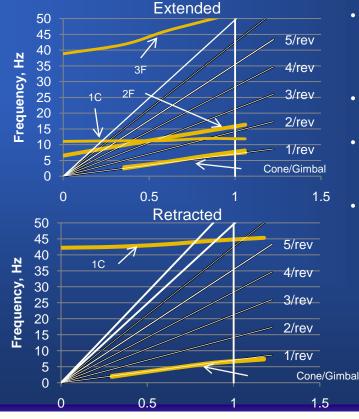
Georgia Institute of Technology

- Diameter = 35.3 in.
- Length = 61.4 in.
- Power to Weight = 5.1
- Consider technology adjustments
- Significant room for horsepower growth

Engine Parameter	Value
Engine Weight, lbs	230.1
Installed MRP, HP	2,034
MCP cruise, HP	590
SFC cruise, lb/HP*hr	0.368
Idle Power, HP	203.45

Empirical Transmission Sizing

$$W_{\rm DS} = 42.4 \left(\frac{HP \cdot R}{V_T}\right)^{0.763}$$


Simplified transmission as rotor speed changes are dictated by variable diameter rotor

Drive Systems Initial Sizing				
HP	4000 hp			
HP (contingency)	4800 hp			
Rotor Diameter	27 ft			
Rotor Radius	13.5 ft			
Rotor Tip Speed	662 fps			
Torque	3323 ft lbs			
Torque Contingency	3988 ft lbs			
Weight drive system	1400 lbs			

Trade Study: Variable Transmission/VDTR

- Necessary to slow rotor tip speed in high speed forward flight
- Can be accomplished by reducing rpm in transmission or reducing radius
- Most literature on VDTR show an un-faired cutout section when the blade is extended to maximum diameter.
- Maximum radius reduction of 40%.
- Known wind tunnel tests, TRL 5

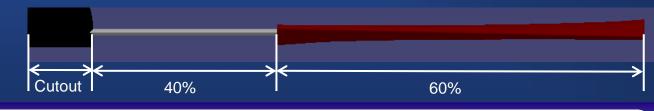
- Trade study supports movement of design rotor RPM to avoid forcing frequencies and maintain hover requirements
- Analysis incorporates CIRADS design parameters.
- Developed blade element code to analyze the stringent 6k95 hover requirement.
- Detailed retraction schedule, estimated at 120 – 150 knot transition

Fwd Flight Radius	8.16 ft
Cutout	5.34 ft
Hover RPM	425 rpm
Hover Pwr Reqd (hp)	1120 (per)

VDTR Actuation and Rotor Airfoil Design

- System spins with outer rotor shaft
- Brake the inner shaft to extend
- Brake the outer shaft to retract
- Retraction takes about 20 seconds
- Very low torque required

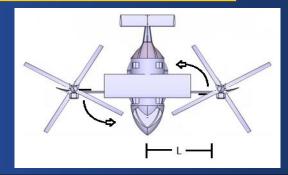

Georgia Institute of Technology


- Blade Properties
 - Linear twist of -20 degrees, NACA 0015 airfoil
 - Increased root structure for stability
 - Moderately stiff-in-plane [1.6p], no unfavorable mode crossings
- Gimbaled hub
 - Stiffness sized from Sikorsky recommendations
- Balance technology insertion with other low risk components

13

- Simple Box Beam
 - Internal/external section
 - Combined section
 - Dimensioned from NACA 0015
 - Shrunk to allow aerodynamic portion to twist

GT VADR

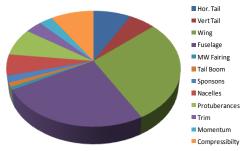

Trade Study: Vertical Download

- Present tilt-rotors typically have a vertical drag factor (rotor download on wing) equivalent to 10-15% GW, requiring more thrust for hover
- Using a tilt-wing section just below the rotor wake can reduce download to ~1%

$$e_d = \frac{S_{\exp}B}{3A_d} = \frac{15\text{ft}^2 * 0.97}{3*515\text{ft}^2} \approx 0.01$$

- Vertical wing sections can have a stabilizing affect on rotor control inputs
- Addition yaw moment can be generated by deploying ailerons in hover condition
- Potential susceptibility to gusts, mitigate with handling qualities simulation and flight tests
- Tilted Wing TRL 5, Active Ailerons TRL 2

Georgialnstitu of Technology


Ratio aileron/wing chord	0.2
CL (flap)	0.698
Aileron Area	16.8 ft^2
Inflow (Hover 6k95)	40 ft/s
Lift Calculated (aileron deployed 20 deg)	111.37 lbs
Distance to CG (L)	~16 ft
Additional Yaw Moment	1781 lb ft
Moment of Inertia about Vertical Axis	18100 slug*ft^2
Commanded Angular Acceleration	0.57 deg/s^2
Angular Rate after 5 seconds	7.125 deg/s

💥 GT VADR 🗶

Drag Analysis

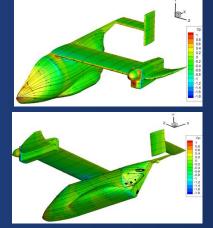
Configuration	Fe (sq ft)
Cruise (nacelle fwd)	14.2
30 deg nacelle/wing	142
Helo (nacelle/wing hp)	465

Cruise F_e by Component

Georgia Institute

DRAG BUILDUP (Initial drag estimates were parametric)

- Manual piece-wise summation of structural components using real geometry (Lifting Surfaces and Bodies of Revolution)
- Reference Hoerner's Fluid-Dynamic Drag and Bell Helicopter proprietary methodologies
- For helo mode, estimates assumed nacelle and rotatable wing section together
- Used for performance analysis, then updated with follow-on CFD analysis


INITIAL CFD

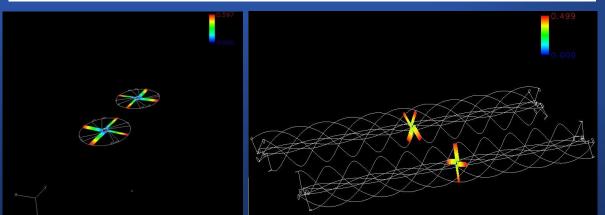
ō

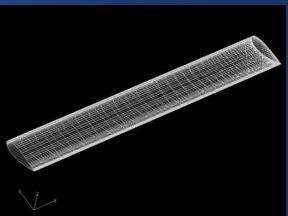
- Initial CFD analysis was performed on the preliminary outer mold line using CFD++ (Metcalf Technologies)
- Half-body symmetric vehicle, unstructured mesh of 5 million elements
- Used search and rescue mission configuration with a 300 knot velocity at 20k ft
- Identified areas for improvements for future fuselage work including separation of rear fuselage, wing/fuselage joint section and engine inlet

PLAN AHEAD FOR CFD

- Use mold developed from water tight CATIA model, Java macro in place
- Fuselage optimization
- Perform runs at cruise speed varying altitude and tilt wing angles
- Verify speed ranges for wing/nacelle sections for transition

Noise Analysis


Rotor configuration established in PSU-WOPWOP


Georgia Institute of Technology

- Hover configuration originally evaluated for microphone 60 ft away from centerline in hover but twin rotor did not produce believable results
- Evaluated the tilt rotor specific requirements from ICAO Appendix 16, Volume 1

Flight Mode	Resulting Noise Measurement (EPNdB)	Required Noise Level (EPNdB)
Takeoff	56.5	< 100
Overflight	35.7	< 99
Approach	65.0	< 101

IRSS Considerations

Infrared Suppression System

- Module 1: conceal heated exhaust duct
- Module 2: limit "lock-on" sight lines to turbine
- IR detecting missiles are readily available to hostiles around the world
- Hand-held SAMs typically lethal from 0-4000 ft
- Exhaust plume 10% contributor. Hot surfaces (e.g. metal exhaust duct)
 & power turbine create most significant detectable IR signature
- Tilt rotor design does not exhaust onto aircraft surfaces
- Limited threat vulnerability to taking/landing/insertion

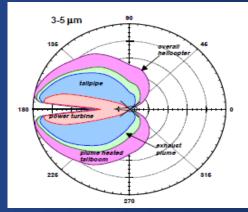


Image courtesy J. Thompson

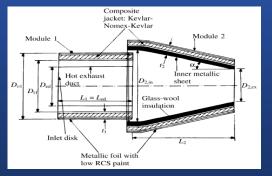
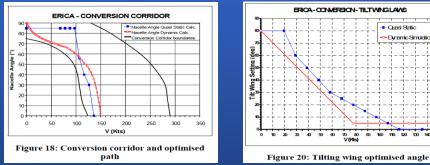


Image courtesy of Mahulikar, et. Al.

Georgialnstitute

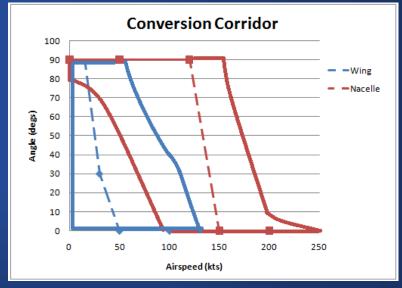
DESIGN – Address major offenders with passive control

- Incorporate low IR signature paint to reduce sunshine effects
- Module 1: Conceal heated exhaust duct
- Module 2: Limit "lock-on" sight lines to turbine
- Penalties: Minimal drag increases, 1 3 % loss to Power Available, 30 lb maximum added weight
- Later incorporation of additional Aircraft Survivability Equipment


Transition

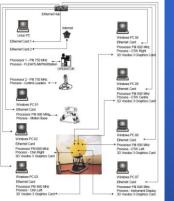
- Quesi Static

Dynamic Simulation


ERICA concept schedules nacelle and wing section deployment independently (AIAA 2003-2015)

- Nacelle moves non-linearly to 70 deg by 50 kts; 0 deg by 150 kts 0
- Wing section immediately moves down with forward airspeed, • linearly transitioning to full fixed wing mode by 80kts.

Developed acceptable conversion corridor as part of transition study.

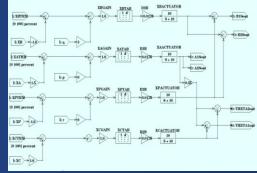

- Used developed power required curves to schedule wing and • nacelle section movements without large power differences.
- FARs require transition to fixed wing mode without loss of altitude ٠
- Analyze handling qualities during transition where possible ٠

VADR Wing and Nacelle Conversion Corridor

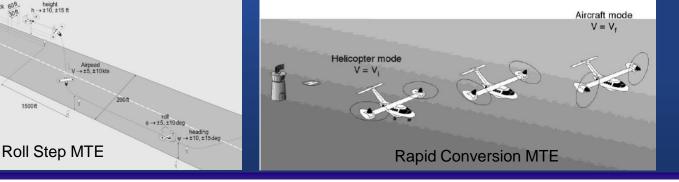
Flight Controls and Handling Qualities

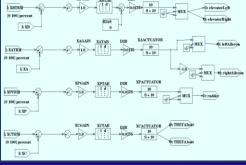
HELIFLIGHT Schematic

GeorgiaInstitute of Technology


track 60ft.

- Planned Fly-By-Wire System with hover and fixed wing controls laws scheduled by airspeed and nacelle /wing angle
- Model compiles and trims in the hover condition


FLIGHTLAB Model Development


- Model compiles and trims in the hover condition
- Model allows configurable wing section and nacelle
- HQ test matrix to show design meets mission profiles including maneuvers for search and rescue operations, climbs & descents, nap of the earth and transition

Helicopter Flight Control System

Fixed Wing Flight Control System

Multi-Mission Growth

		T :- h 4	Mall	II
rtion and Resupply	JMR Class	Light	Medium	Heavy
	Speed	>170-300+ kts	>170-300+ kts	>170-300+ kts
, maintains margins for	Op Radius	~424 km*	~424km*	~424km*
,	Payload	~2k-4.5k lbs	~6k-20k lbs	~20-30k lbs
	Passengers**	~4-6	~11-24	~33-44
lity with high best range	Joint Missions	Recon	Recon	Recon
1		ISR	ISR	ISR
		MEDEVAC	MEDEVAC	SOF
		SOF	SOF	Amphib Assault
		SAR	SAR	CSAR
		Amphib Assault	Amphib Assault	VERTREP
1		Attack	Attack	MCM
VADR - Light Category		ASW	CSAR	VOD
		ASUW	ASW	Cargo/Lift
		C2	ASUW	Transport
		Transport	VERTREP	
		Security	MCM	
			C2	
			VOD	
			Cargo/Lift	
VADR - Medium Category			Transport	
VADR - Medium Category			Security	

🕈 GT VADR

- VADR successively conducts Search and Rescue, Insertion and Resur • missions as defined by AHS requirements
- Design balances tech insertions with low risk selections, maintains ma growth and identifies areas for further optimization
- Configuration as presented has self-deployment capability with high be speeds and ISR capability with variable loiter speeds

Payload (lbs)	6000	8000	10000	12500	15000
GW	18513	21242	23979	27379	30779
MR Radius	14.03	15.04	15.93	17.04	18.07
Solidity	0.088	0.082	0.078	0.073	0.068
RotorBladeWt	1436	1569	1703	1854	2001
Wing Weight	1711	1596	1507	1408	1328
Max Cont Power	2986	3415	3849	4394	4948

- Current AHS requirements match closely with preliminary JMR requirements for the light category
- Design can easily be expanded to meet medium requirements with little change

Georgialnstitute of Technology

