IBIS

Executive Summary Undergraduate Design Team University of Maryland, College Park

41st Annual Vertical Flight Society Student Design Competition

Sponsored by DEVCOM ARL

<u>Introducing Ibis</u>

The University of Maryland undergraduate team presents *Ibis* as its solution to the Vertical Flight Society's 41st annual student design competition Request for Proposal (RFP). *Ibis* is named after the american White Ibis, which, according to native american folklore, is the last bird out and first one back after a storm. With the capability of nearly 11 hours in loiter, payload carrying capacity of almost 60 kg, and a versatile yet reliable design, *Ibis* is truly unlike any other UAV on the market. The robust structures and user-friendly mechanisms allows *Ibis* to pinpoint victims and offload lifesaving supplies without the need for special training or tools on the ground.

Vehicle Configuration Selection

DOWNSELECTION

Single Main Rotor vs. Tandem

FINAL SELECTION

Single Main Rotor

- Mechanically Simple
- Reliable

UNIVERSITY OF

- Proven Technology
- Industry Standard

Compact Internal Packaging

High performance and Durable Rotor Blades Single Airfoil: OA212 **Outboard Taper 2:1** Inboard Taper 1:1 **Taper Transition Point** Single Twist -9.5°/span 19% Root Cutout 1.0R 0.19R 0.4R 0.8R 0.6R 0.0R Highly effective design to enable exceptional vehicle lift-to-drag ratio Carbon/Epoxy Main Rotor **Copper Mesh** ±45° Skin **Blade Number** 3 **E-glass/Epoxy** 0.82 Wedge FM L/D_{Cruise} 5.23 0.12 C_T / σ **M**_{tip} in Cruise 0.68 **Stainless** Rohacell **Steel Erosion** $23.92\ kg/m^2$ **Disk Loading** Foam Core Strip (4.9 lb/ft²) Unidirectional Tungsten **Power Loading** 8.55 kg/kW

Carbon/Epoxy

D-spar

Weights

(14.05 lb/HP)

Proven Technology Tail Rotor and Empennage

Single Airfoil: OA209

UNIVERSITY OF

UAV Turbines - UTP50R

- Recuperating gas-turbine engine improves efficiency by recovering exhaust gasses to boost efficiency
- Produces 37 kW at 31.8 kg (1.16 kW/kg) with a SFC of 0.25 kg/(kW*hr).

Main Transmission

- Reliable belt drive system for low weight and
- Easy maintenance and Disassembly
- Large transmission components supported on vibration isolators
- Transmission shaft supported with elastomeric bearings
- Aluminum casting suitable for marine environment

<u>Avionics: Fly Without Pilot</u> <u>Intervention</u>

- Wide viewing sensors and onboard processing allow *Ibis* to navigate unmapped terrain autonomously
- Communication equipment to maintain contact anywhere
- Sensing to see and avoid other aircraft

Ibis's Sensor Locations

- Autopilot: GPS/INS/ADS-B
- FLIR/Optical Camera: Aids in search and rescue
- LiDAR: Enables object avoidance
- Flight Control Computer: fuses sensor data
- Fixed Cameras: For landing

UNIVERSITY OF

• Radar Altimeter: Accurate altitude measurement

Single Configuration, Modular Tailoring Removable Payload Ramp keeps Supply Receivers Safe **Removable Fuel Tank Allows** Adjustable Empty Weight More Room = More Missions Audio and Visual Warnings Reduce Risk for both Trained and

Untrained Operators

Superior Mission Capabilities

Ibis' performance surpasses the needs of both missions with a single efficient design.

Cost and Weight Breakdown

Component		Weight - kg (lb)	% of Empty Weight
Rotors	Main	6.93 (15.27)	7.88
	Tail	0.11 (0.24)	0.12
Airframe	Skin	8.73 (19.25)	9.94
	Frame	7.74 (17.08)	8.82
	Paint	0.38 (0.83)	0.43
	Door	2.78 (6.12)	3.16
	Horizontal Tail	0.16 (0.34)	0.18
	Vertical Tail	0.12 (0.26)	0.13
Landing Gear		5.59 (12.32)	6.36
Propulsion	Engine	34.85 (76.85)	39.67
	Alternator	4.04 (8.90)	4.59
	Firewall	0.19 (0.41)	0.21
Fuel System	Fuel Tank Main	0.29 (0.64)	0.33
	Modular Fuel Tank	0.18 (0.40)	0.21
	Collector	0.01 (0.02)	0.01
Drive System	Main Gear Box	6.69 (14.75)	7.61
	Tail Drive Shaft	1.77 (3.89)	2.01
	Tail Gear Box	0.47 (1.03)	0.53
Avionics		6.86 (15.12)	7.80
Empty Weight		87.86 (193.73)	100.00
Fuel Weight - Supplies		12.00 (26.45)	
Fuel Weight - Endurance		48.87 (107.74)	
Payload - Supplies		50.00 (110.25)	
Payload - Endurance		20.00 (44.10)	
*Additional Fuel + Payload - Supplies		10.14 (22.35)	
*Additional Fuel + Payload - Endurance		3.27 (7.21)	
GTOW		160.00 (352.80)	

MARYLAND

55% Empty Weight Fraction

Aircraft Subsystem	Cost (\$)
Main Rotor	8,860
Tail Rotor	1,170
Avionics	55,000
Airframe	50,700
Powerplant	37,000
Final Assembly	50,000
Total Cost:	202,730

Ibis offers an Affordable, Market-Competitive Cost: \$202,730

<u>Summary</u>

In response to the RFP for the 2023-2024 VFS Student Design Competition, sponsored by ARL, the University of

Maryland undergraduate team presents the *Ibis*. Taking to the skies mere minutes after natural disasters ravage coastlines and cities, *Ibis* stands ready to provide aid to those left at the mercy of mother nature. *Ibis* is capable of delivering payloads of over 55 kg of life-saving supplies 185 km away from its takeoff point and acting as a temporary communications relay for over 10 hours in the critical time frame after a natural disaster.

Ibis uses proven single main rotor/tail rotor technology with a maximum takeoff weight of 160 kg. It boasts a lightweight, mechanically simple structure and uses proven technology in every aspect of the design. Able to tolerate wind gusts in all directions with a 3-bladed, fully articulated rotor and with its marinized landing gear and outer skin, *Ibis* sails the high seas, ready to be deployed at a moment's notice.

